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ABSTRACT 
Our investigation aims to develop a quantitative human 
performance model of making single-stroke pen gestures 
within certain error constraints in terms of production time. 
Such a model will be useful as a foundation for the design 
and evaluation of existing and future gesture-based user 
interfaces at the basic motor control efficiency level, similar 
to the role of previous “laws of action” played to pointing, 
crossing or steering-based user interfaces. We report and 
discuss our experimental results on establishing and 
validating the model, together with other basic empirical 
findings in stroke gesture production. 

Author Keywords 
Pen stroke gestures, experimental study, pen input. 

ACM Classification Keywords 
H5.2. Information interfaces and presentation (e.g., HCI): 
User Interfaces, Theory and methods.  

INTRODUCTION 
Single-stroke pen gestures have been widely used on many 
pen-based computing devices such as PDAs, tablet PCs or 
electronic whiteboards. These pen gestures can be used to 
input text on a letter-level such as Unistrokes [7] and 
Graffiti, or on a word-level such as in ShapeWriter (also 
known as SHARK shorthand) [11]. Pen gestures can also be 
used to trigger system commands and operate applications 
[8, 14]. With the increasing availability and popularity of 
pen-based devices, especially mobile devices, it is likely 
that we will see even more applications of pen gestures in 
various environments. 

In order to enhance the user experience of gesture-based 
interaction systems, numerous research works have been 
conducted to improve the performance of gesture 
recognizers [10, 21] and to design gestures that are easy to 
learn and remember for users [12]. However, there has been 

relatively little research on quantitative models of human 
performance in producing pen gestures that can characterize 
the efficiency of a given gesture or a gesture set. Such 
models would help the design and evaluation of existing or 
future gesture interfaces by quantitatively predicting their 
efficiency before running extensive user studies.  

The existing theoretical tools in user interface design at a 
motor control level are a set of so-called “laws of 
action”(See [18] for a brief review).  They model human 
performance on tasks including pointing (Fitts’ law [6]), 
crossing (essentially Fitts’ law [2]) and path steering [1, 3, 
4]. However, the existing laws only apply to visually 
guided performance and therefore may not be appropriate to 
model freehand open-loop stroke gestures.  

A highly desirable goal is to extend the family of laws of 
action to pen stroke gestures. However, freehand gesturing 
is an inherently complicated behavior that involves 
planning, chunking, and the variability of behavior across 
different people and different types of gestures. As we 
move up the ladder of motor control skills, simple 
regularities that can be called a law may not exist. The goal 
of our current work is to build a “computational” model that 
can predict the production time of single pen-strokes as a 
function of the stroke’s composition, which is still valuable 
as an approximation tool in analyzing and designing pen-
gesture interfaces.   

PREVIOUS WORK 
Isokoski [9] proposed a model for stroke gestures that used 
the number of approximating straight line segments in a 
gesture as a predictor of complexity correlating to 
production time. The underlying assumption is that drawing 
a straight line segment takes constant time, regardless of the 
length of the segment. The model’s best correlation result 
was R2 = 0.85 on Unistroke characters [7],  and it achieved 
R2 between 0.5 and 0.8 for other gesture sets. This model 
provides a useful quick prediction, with the attractive merits 
of simplicity and ease of application. However, defining the 
number of straight line segments needed to approximate a 
curved gesture is ambiguous. Furthermore, it does not 
provide an estimation of the magnitude of the actual 
production time. While we will maintain the same first 
order approximation spirit as this model, our goal is to more 
closely reflect the complexity in the actual strokes. 

At a more fundamental motor control theory level,  Viviani 
and colleagues [16, 17] investigated human handwriting 
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and drawing behavior in terms of instant movement 
velocity as a function of curvature, and proposed a power-
formed model. A simple version of their formula is that for 
a given point on the written/drawn trajectory: 

βKRV =  (1) 

where V is the instant (tangential) velocity of movement; R 
is the radius of curvature C (R=1/C), and K and β are 
constants of the model. 

 
Figure 1. Viviani’s power law of curvature. 

The model, known as the power law of curvature, indicates 
that the larger curvature the trajectory has at a given point, 
the slower the pen motion will be at that point. This model 
has been tested in different settings, including drawing 
trajectories with or without visual guidance [17]. We will 
derive some basic assumptions in our model based on this 
movement law. 

APPROACH 
The approach we took was to first find common “building 
blocks” of pen strokes at an appropriate level. Our model is 
based on the assumption that any gesture stroke can be 
decomposed into several “elements”, each of which can be 
modeled by a lower-level model. The total model is 
represented by integrating the elemental models.  

While making this “reductionism” assumption, we 
recognize the possibility that the interaction between 
elements and the user’s planning as a whole will result in a 
shorter or longer gesture production time than the simple 
sum of all elements. However, we hypothesize that the sum 
of elements may still give a first order approximation or a 
baseline prediction useful for many applications.  

In what follows we first build a set of lower-level models of 
the common building blocks of stroke gestures, based on 
information from the existing literature and intuition, to be 
verified by later experiments. 

Smooth Curve 
The trajectory of a given gesture G is represented by the 
parameter equation:  

))(),((: syysxxG ==    (2) 
where 
 (x,y): coordinates of the current point on the gesture. 
  s: curve length between the starting point and the current point. 
  t = t(s): time passed since the starting point until the current point. 
 V = V(s) = ds/dt: instant velocity. 
 R = R(s): radius of curvature. 
 S: total curve length of G  (0 ≤ s ≤ S). 
 T: total production time of G (0 ≤ t ≤ T) 

Assuming 0<R(s)<∞, then according to Viviani’s power 
law of curvature the production time of G is:  
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which gives the theoretical time prediction of a smooth 
curve gesture articulation  T(curve). 

A special case of smooth curves is a circular arc with a 
radius r and a sweep angle α, which has a constant radius of 
curvature R(s) = r (Figure 2). The total length of the arc is 
S=αr. The total production time is then: 
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Figure 2. Circular arc. 

To analyze the same gesture drawn in different scales 
(spatial sizes), consider gesture G´, which is G spatially 
scaled to the factor of δ. Then the total curve length of G´ is 
δS, and the radius of curvature for G´ becomes R´(s´) = 
δR(s´/ δ) (0 ≤ s´ ≤ δS). The total production time of G´ is 
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Straight Line 
For a straight line segment, the curvature is zero anywhere; 
therefore R(s) = ∞. However, V cannot be ∞ in practice. 

From previous knowledge and intuition, three plausible 
candidate models may be proposed for the production time 
of a straight line. Let L be the length of the line: 

(a) Constant time model: T(line) = c   
which is the underlying assumption of Isokoski’s model. 

(b) Linear model: T(line) = aL + b   
which implies a constant movement velocity 1/a, plus a 
constant overhead time b (covering starting and stopping 
etc.). 

(c) Power model: T(line) = mLn 
this model suggests people tend to move faster with longer 
lines (but not to the extent that results in constant drawing 
time), and result in a power-like relationship between 
production time and length. Later this power model proved 
most valid according to our experimental data. 

Although the orientation of a line segment may also affect 
its production time given the asymmetry of hand and arm 
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anatomy, we hypothesize that such an impact will be 
relatively small compared to that of the length. 

Corner 
Pastel [15] studied human performance of steering through 
paths with corners, and found that people spent more time 
steering through paths with 90º corners than with paths with 
45º and 135º corners. However, since a steering task is 
fundamentally different from the open-loop movement in 
making gestures, the same trend may not exist in gesture 
performance on corners.  

Since a corner only exists with the arms that form it, it is 
difficult to define the operational boundaries of a corner.  
We therefore define T(corner) as “the net contribution of 
the abrupt direction change to the total production time”. 
This value may not necessarily be positive (it is possible 
that drawing a corner takes less time than drawing 2 
separate lines). For generality, we tentatively represent the 
corner production time as: 

T(corner) = f(θ)   (6) 

f is an arbitrary function of the corner angle θ, to be found 
through experiments. 
 

We postulate that any given single stroke gesture can be 
decomposed into these three types of elements: 
(approximate) straight line segments, corners, and smooth 
curves, each of which can be modeled by their respective 
elemental models to be established by experiments. We 
then put these elements together to form a general 
summative model of total stroke production time: 

)()()( curveTcornerTlineTT ∑∑∑ ++=    (7) 

 
Figure 3. Decomposition of a gesture. 

We conducted two experiments to establish the models and 
test their validity, and to look for other interesting 
phenomena relevant to stroke gesture design and 
applications. 

APPARUTUS AND EXPERIMENTAL METHOD 
All experiments were executed on an Acer TravelMate 
C110 tablet PC using stylus input. A program was 
developed for pen gesture study. In each trial, the program 
displays a sample (target) gesture in the top window, with a 
red dot and an arrowhead indicating the starting and ending 
points respectively. The user then draws the prompted 
gesture with the stylus in the bottom window. Determined 
by an error metric (described later), the system decides 
whether the user’s input is acceptable. If it is, the original 
sample is displayed in green, overlaying the user’s input to 

indicate success (Figure 4). Otherwise, it is displayed in 
red, and the user must repeat the input until it is accepted. 
This overlaying feedback helps the user to determine how 
good the input is, and which part needs to be improved. The 
feedback disappears before the user can make a second 
attempt, in order to prevent the user from visually tracing it. 

 
Figure 4. Experiment interface. 

The gesture samples presented in the experiments were 
generated using a semi-automatic authoring program, with 
which the decomposition of the gestures can be 
interactively specified. 

Unlike previous modeling work on visually guided actions, 
such as target pointing, goal crossing or path steering with 
explicitly defined error behavior (on or off target, in or out 
of path, but see [20] for the complications even in the case 
of Fitts’ law error calculation), the error of a stroke gesture 
is more ambiguous, subjective (in the case of a human 
observer), or system dependent (in the case of machine 
recognition).  There are potentially infinite numbers of error 
metrics that can measure the difference between two 
instances (the input and the sample) of a stroke gesture. 
Hence it is difficult, if not impossible, to select the “best” 
error metric that reflects human’s (and recognition 
system’s) sensitivity and habits in all situations. Our tactic 
in this regard is to define an operational procedure that can 
capture the essence of holding all gesture strokes to the 
same error tolerance criterion. We aim to select an error 
metric that is intuitive, relatively simple (hence more 
general), and insensitive to scale. In our procedure the input 
gesture U and the sample gesture V are first normalized by 
scaling and translating so that both of them have a bounding 
box with the larger side measuring 1 length unit, and 
centered at (0,0). Then both U and V are re-sampled into M 
(=25) equidistant sample points. Let ui and vi (1≤i≤M) 
denote the sample points for U and V respectively, then the 
error metric E is defined as 

∑
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which is the average spatial distance of all corresponding 
pairs of sample points in two gestures. Since all gestures are 
normalized in size, scaling the gestures does not affect E. E 
effectively measures the “relative” or “percentage” shape 
distance between the input and the sample. This error 
metric has been previously used as the foundation of 
gesture recognition in ShapeWriter (also known as SHARK 
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shorthand) [11],  which is one type of application this 
current work attempts to address. 

In our experiments, the acceptance threshold for E was set 
at 13.5% of the sample stroke length. Since spatial scaling 
may also affect the production time of a gesture, we also 
required the size of the input gesture within 1/1.3 ~ 1.3 
times of the sample gesture to be accepted. These 
thresholds were selected based on pilot trials. 

For each successful trial, we recorded the production time T 
(from the time that the stylus touches the tablet to the time 
the stylus leaves it), percentage error E, and the number of 
attempts (denoted A hereafter) made until accepted by the 
system. 

EXPERIMENT 1: BUILDING & VERIFYING THE MODEL 

Goal 
In this first experiment, we sought to establish the forms 
and estimated parameters for the elemental models, as well 
as to verify the validity of the summative model.  

Design 
The experiment consisted of 5 categories of pen gestures, 
each tested in a separate phase of the experiment, as shown 
in Figure 5. The first three phases of the experiment used 
elemental gestures to determine the elemental models, and 
the last two used composite gestures to test the validity of 
the summative model (derived from the first three phases). 

    
Straight Line      Arc          Corner            Polyline           Arbitrary 

Figure 5. Gesture categories (phases). 

Straight Line 
To establish the T(line) model, we tested straight lines of 6 
lengths (L): 15, 30, 45, 60, 75, 90mm, and 8 orientations: 
0º, 45º, 90º, 135º, 180º, 225º, 270º, 315º CCW.  

Arc 
To establish the T(curve) model, we tested circular arcs of 3 
radiuses (r): 12, 24, 36mm, 4 different sweep angles (α): 
90º, 180º, 270º, 360º, 2 different start angles (the position 
angle at which the stroke starts from): 90º, 180º CCW, and 
2 directions: CW, CCW. We sought to find the parameters 
β and K in equation (3) by regression on equation (4) with 
the experimental data on arcs. 

Corner 
To establish the T(corner) model, we tested corners with 
equal arm lengths of 30mm, and 8 corner angles (θ): 0º, 
22.5º, 45º, 67.5º, 90º, 112.5º, 135º, 157.5º, 4 start angles 
(the position angle of the starting arm): 0º, 90º, 180º, 270º 
CCW, and 2 directions: CW, CCW. 

Polyline 
Polylines are gestures that consist of only connected 
straight line segments. This is the type of gesture used in 
the ShapeWriter text input system [11]. Its gesture 
prototypes consist of straight lines connecting letters on a 
soft keyboard. We selected 36 representative gestures from 
the most commonly used words in the ShapeWriter system 
as the samples in this category. Out of these 36 samples, 6 
of them consisted of 1 line, 6 consisted of 2 lines, …, 6 
consisted of 6 lines. The sizes of (the bounding boxes of) 
the gestures varied between 40 ~ 80mm.  

Arbitrary Gesture 
This category contains gestures without particular 
constraints (i.e. the most general). 36 samples were selected 
from the Graffiti gesture set, including representatives of 
letters, numbers, and functional gestures. However, in order 
to reduce the familiarity to the user that may bias the result, 
all gestures were rotated by 90º. The sizes of (the bounding 
box of) the gestures were set to be roughly equal (~50 mm). 

A fully crossed within-participant factorial design was used 
for each phase. Each experiment phase was executed in 3 
repeated blocks. Within each block the participant 
conducted one trial for each sample (of length, orientation 
etc). The presentation order of the samples was randomized 
in each block. Ten practice trials were performed before 
each phase started. 

Ten right-handed volunteers, aged 20~59, participated in 
the experiment. 

Results 
Straight Line 
Both length (F5,45=29.7, p<.001) and orientation 
(F7,63=7.13, p<.001) had significant effects on the 
production time T of straight lines. No significant 
interaction between length and orientation was found 
(F35,315= 1.37, p=.085). Therefore the Constant time model 
for T(line) is clearly invalidated. 
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Figure 6. Straight line production time. 

The effect of orientation on T is more clearly illustrated in 
Figure 7. 45º and 225º lines took less time than lines in 
other orientations. For the right-handed participants 45º and 
225º lines can be achieved by wrist rotations. 90º (upward) 
lines took the most time. 
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Figure 7. Orientation effect on production time. 

Although orientation did affect T, the size of the effect was 
small compared to that of length. Therefore, we felt it safe 
to only account for length in our T(line) model.  

To compare the Linear model and the Power model, we 
performed regression for both models with the experimental 
data. 

 
Figure 8. T(line) model: Linear vs. Power. 

Linear Model: 
        T(line) =  4.24 L + 203     (R2 = 0.984)    (9) 
Power Model: 
        T(line) =  68.8 L 0.469       (R2 = 0.998)           (10) 
                                                      (L in mm, T in ms)                                                               

Note that both models have 2 degrees of freedom; therefore 
any difference between their fitness with experimental data 
should not be due to model complexity difference. 

The Power model best describes the relationship between 
length and production time. Therefore 

T(line) = mLn    (11) 

is the best validated elemental model for straight lines 
although the specific parameters m and n may be subject to 
individual differences. 

Both the number of attempts A and percentage error E (only 
for successfully passed trials) are informative measures of 
input accuracy. Length showed significant effects on both E 
(F5,45=25.2, p<.001) and A (F5,45=22.4, p<.001). Both E and 
A decreased as the length increased, which suggests it is 
harder to maintain the same relative accuracy with smaller-
sized gesture (illustrated in Figure 9). 
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Figure 9. Length effect on input errors. 

Orientation also showed significant effects on both E 
(F7,63=30.9, p<.001) and A (F7,63=2.77, p=.014). Movements 
on the primary axes (horizontal and vertical) tended to be 
more accurate. Note the different trends of production time 
and input error as related to orientation. Although the 45º 
and 225º lines were faster to produce, they were also among 
the most error-prone compared with other orientations. No 
significant interaction between length and orientation were 
observed for either E or A. 
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Figure 10. Orientation effect on input errors. 

In summary, the length of a straight line was the 
predominant determinant of the line’s production time and 
accuracy. Within a set accuracy threshold, a power model 
best described the production time as a function of the 
length. The orientation of a line also affected time and 
accuracy, although secondarily. A diagonal line along the 
wrist rotation direction was somewhat faster to produce, but 
horizontal and vertical lines were more accurate. 

Arc 
As we expected based on the power law of curvature 
derivation and analysis, both radius (r) (F2,18=23.5, p<.001) 
and sweep angle (α) (F3,27=23.6, p<.001) had significant 
effects on production time T. The interaction between them 
was also significant (F6,54=13.6, p<.001). Neither start 
angle nor direction showed significant effects on T.  
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Figure 11. Arc production time. 
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The regression according to equation (4) gave: 

     T(arc) =   α r 1-0.586 / 0.0153   (R2 = 0.948) (12) 
                (α in radians, r in mm, T in ms) 

The high regression coefficient validated our derivation of 
equation (4). Consequently, we obtained K = 0.0153, β = 
0.586 for equation (3). 

Both radius and sweep angle also had significant effects 
(p<.001) on E and A. Similar to the straight line cases, both 
error measures decrease as the radius increases. Arcs with a 
sweep angle of 180º (semicircle) introduced the least error.  

Corner 
To compute a corner’s “net time contribution” as we 
proposed previously, we subtracted the time spent on 
drawing two corner arms (30mm straight lines) from the 
total production time of the corner gesture. Drawing from 
the experimental data of the straight lines, the participants 
spent an average of 370ms on straight lines of 30mm. 
Therefore T(corner) = sample production time – 740ms. 

The corner angle θ showed a significant effect (F7,63= 2.74, 
p=.015) on T(corner) (Figure 12). T(corner) fluctuates 
around zero, with corners of 0º, 22.5º and 90º contributing 
negative mean time, and all other corners contributing 
positive mean time. However, the absolute values of these 
contributions were less than 40ms for all angles 
(T(corner)mean=12.7ms). Given the small value of T(corner) 
compared with other elements, we chose to omit this 
element in our first-order approximation model.  
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R2 value is the validity metric for modeling normally used 
in testing laws of action – to test how tightly empirical data 
regress to the model predictions. Such an approach tests the 
form of a model, but not its specific parameters. The 
parameters are left floating, and are used as performance 
indicators of individuals, different muscle groups, devices, 
or interface methods. By such a metric the validity of the 
proposed model is quite strong. Next we challenge the 
model to the next level, to examine the specific value 
predictions against actual instances of gesture production.  

The average value of Tp across all polyline gestures is 
1208ms. Compared with the average value of Td =1684ms, 
Tp-avg = 0.717 Td-avg. In other words, although on average the 
magnitude of the prediction is similar to the actual data, it 
underestimates the participants’ production time. Plausibly 
the longer average actual production time could be caused 
by cognitive overhead (e.g. pausing or slowing down to 
plan for the following segments when a polyline gesture has 
many segments) that are yet to be completely removed by 
practice.  Recall that the experiment only had three blocks 
of tests and within a block each sample gesture was tested 
only once.  For complex and unfamiliar polyline gestures 
this might not be enough practice to reach the fluid 
gesturing behavior that equation (13) intends to model. The 
more complex a gesture is, the more likely the model would 
underestimate the actual time when the gesture is still 
unfamiliar. This could have caused the slight upward bend 
of the data in Figure 13. We predict that the model’s 
underestimation could be reduced or eliminated (or even 
become overestimation) if the participants had enough 
practice with the gesture set. In the following experiment 
we had the opportunity to test this prediction.  

Arbitrary Gesture 
Similarly, we verified the proposed model with the arbitrary 
gestures that consisted of both straight and curved 
segments. The Tp predictions were computed by equation 
(13), and verified against Td, the mean value of the 
experimental data for each gesture. The integrals for each 
curve segments were calculated numerically. Figure 14 
plots the correlation between Tp and Td. The correlation 
coefficient R2 = 0.914.  

 
Figure 14. Model prediction for arbitrary gestures. 

In contrast to the polyline predictions, the model 
predictions of the tested arbitrary gestures were longer than 
actual production time. The average value of Tp across all 
arbitrary gestures was 1343ms, and the average value of Td 
was 1045ms. Tp-avg = 1.285 Td-avg. To clarify, we divided the 
arbitrary gesture set into those which only consist of 
straight lines (i.e. “polylines”) and those which involve 
curved segments. Incidentally (and surprisingly) Tp-avg = 
1.285 Td-avg held exactly the same for both subsets. This 
eliminated the concern that this overestimation of time was 
caused by the model’s bias towards either the straight 
elements or curved elements. Instead, since the samples 
used in the arbitrary category were from the Graffiti gesture 
set, we suspect that the participants’ familiarity with Roman 
letter-like symbols (although rotated) may have helped the 
participants spend less time producing them. It is 
conceivable that for a highly familiar gesture, rather than 
slowing down or pausing to plan for the next move (as in 
the previous phase), one may chunk the entire gesture (by, 
for example, cutting corners) and  therefore achieve faster 
speed than what our model predicts. 

To summarize, the gesture production time predicted by the 
proposed model were consistent with the experimental data 
with the magnitude within ±30% in average, and correlation 
R2 > 0.9. Overall, given its high correlation with and the 
similar magnitude to the experimental data, the proposed 
model is validated as a good first-order approximation. 

EXPERIMENT 2: FURTHER TESTING THE MODEL 
Goal 
Again, going beyond the correlation between the model and 
actual human performance, one potential application of the 
model is to numerically evaluate and compare the 
efficiency of existing and future gesture set design in terms 
of expected gesture production time. As an exercise we 
conducted a small-scale experiment comparing the 
performance of two pairs of existing gesture sets: 
Unistrokes vs. Graffiti, and ShapeWriter [11] gestures on 
two different soft keyboard layouts. We calculated model 
predictions and collected empirical data for each set of the 
gestures. 

Design 
Phase 1: Unistrokes & Graffiti 
Unistrokes [7] and Graffiti are two single-stroke character 
sets. Only the gestures that correspond to letters were tested 
in this experiment. The sizes of (the bounding box of) the 
gestures from both sets were set at ~50 mm. There were 52 
gesture samples in total, with 26 from each set.  

Phase 2: ShapeWriter gestures 
We compared two ShapeWriter gesture sets for English 
words defined on two different keyboard layouts: the 
traditional QWERTY layout vs. the optimized ATOMIK 
layout [19] as illustrated in [11]. We selected gestures for 
the 24 most frequently used words in spoken English 
(excluding one-letter words, which result in a single-click 
in ShapeWriter). The gestures for both layouts were 
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generated on soft keyboards whose individual key size was 
set at 15mm x 15mm.  

A within-participant design was used. In each phase gesture 
samples from the two contrasting sets were mixed and 
presented in random order. To reach “expert” behavior, 
each sample was repeated 8 consecutive times, which was 
in contrast with experiment 1 and gave us a chance to test 
the prediction that the under-estimation of production time 
by the model can be reduced by practice.  The order of the 
two phases was counterbalanced among participants. The 
same error tolerance criterion as in experiment 1 was 
enforced. 

5 volunteers, who were all participants of experiment 1 and 
still available, participated in experiment 2. This was to 
ensure that the data from the two experiments were 
comparable, given the possible large individual differences 
in the elemental model parameters. We emphasize that 
running the experiment at such a small-scale was only to 
empirically test the model’s prediction power for a given 
group.  

Results 
We first performed regression on the 5 participants’ data in 
experiment 1 to derive parameters specifically for them: 

T(line) =  88.0 L 0.394 (ms)         (17)      

            (ms)  (18) 
 

Phase 1: Unistrokes & Graffiti 
Using the above parameters, we computed time predictions 
Tp for each gesture sample from Unistrokes and Graffiti. 
Correlation between Tp and experimental data Td  is plotted 
in Figure 15(a), with R2 = 0.920.  

According to the letter frequencies reported in [13], we 
calculated the expected gesture production time for both 
gesture sets: 

Model prediction:  
Unistrokes : Graffiti = 622 ms : 1125 ms = 0.553 : 1 
Experimental data: 
Unistrokes : Graffiti = 365 ms : 591 ms = 0.618 : 1 

 
(a) Unistrokes & Graffiti                 (b) ShapeWriter gestures 

Figure 15. Experiment 2 results. 

Phase 2: ShapeWriter gestures 
Using the same parameters, we computed time predictions 
Tp for each gesture sample for the ShapeWriter gestures on 
both keyboard layouts. The correlation between Tp and 

experimental data Td  is shown in Figure 15(b), with  R2 = 
0.960.  

Weighted by word frequencies estimated from the ANC 
(http://americannationalcorpus.org/) we calculated the 
expected gesture production time for the top 24 words on 
both keyboard layouts. 

Model prediction:  
ATOMIK : QWERTY = 600 ms : 768 ms = 0.781 : 1 
Experimental data: 
ATOMIK : QWERTY = 438 ms : 506 ms = 0.865 : 1 

This confirmed that ATOMIK is a more efficient layout 
than QWERTY for ShapeWriter. In addition to the 24 
words tested for ShapeWriter in Experiment 2, we can also 
theoretically estimate an expected production time for the 
gestures in a complete dictionary, which is difficult to do 
empirically. Based on 27628 common spoken English 
words and their frequencies, extracted from the ANC, our 
model predicts that the expected gesture production time is 
903 ms for the ATOMIK layout and 1139 ms for the 
QWERTY layout. This type of analysis, even theoretically 
and approximately, had not been possible previously due to 
the lack of quantitative gesture models. 

To compare model predictions with empirical data, we can 
look at three increasingly stringent indicators. First, the 
model predictions and empirical data correlated well, with 
similar R2 as in experiment 1. Second, between two 
contrasting designs, the performance order as predicted by 
the model was always correct and the ratio predicted was 
similar to that of the empirical data. Third, contrasting with 
experiment 1, we can see that the difference in production 
time magnitude between model prediction and empirical 
data was indeed influenced by practice and previous 
familiarity. Recall that much more repetition of each 
gesture was given in this experiment. Consequently, as 
predicted, the underestimation of time for ShapeWriter 
gestures in the experiment was indeed eliminated. In fact, 
the model overestimated the time that the well-practiced 
ShapeWriter gestures actually took, presumably due to 
chunking. For the more familiar or simpler Graffiti or 
Unistrokes characters, more intense practice in this 
experiment further enlarged the difference between 
prediction and actual data. We will discuss chunking 
behavior further in next section. 

In summary, the proposed model predicted the comparative 
performances of different gesture sets reasonably well for 
the same set of users.  

EXPERIMENT 3: SCALING EFFECT 

Goal 
Equation (5) shows that according to the power law of 
curvature, the production time of smooth curves is 
continuously related to the scale the curved gestures are 
drawn in a nonlinear (power) fashion. The larger a curved 
stroke is, the longer it takes to articulate such a curve within 

dssRcurveT
S
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a set error threshold. The rate of time increase is less than 
linear. Given that scale is a fundamental aspect of 
movement with theoretical and practical significance, we 
conducted an experiment to empirically investigate the 
effect of spatial scaling, both for smooth curves and other 
types of stroke gestures. 

Design 
12 gestures were selected from the Graffiti sample set used 
in Experiment 2. The 12 gestures could be categorized into 
3 classes: 4 gestures were connected straight lines with 
corners (polylines), 4 gestures consist of smooth curves 
only, and 4 gestures consist of both curves and 
corners/straight lines (Figure 16).  

Polyline (I, M, F, N) 

                       
Smooth curve: (S, O, C, K) 

                
Combination: (G, P, Y, E) 

          
Figure 16. Gesture samples for Experiment 3. 

Each gesture were presented in 8 different scales: 24/1 , 

4/1 , 22/1 , 2/1 , 2/1 , 1, 2 , and 2 times of the 
original size (around 50 mm) respectively. We intentionally 
pushed the scale conditions to a very wide range from large 
to small. Although one consistent type of scaling 
relationship may exist in the medium range of scales, 
different types of scaling effects might take place at the 
extreme ends, due to the involvement of different muscle 
groups. Whereas in the medium scales of our experimental 
design a combination of wrist and finger movements was 
required to articulate the stroke gestures, arm movement 
was required to draw at the largest scale ( 2 ) and only 
finger movements were involved in drawing at the smallest 
scale ( 24/1 ). 

A fully crossed within-subject factorial design was used. 
The experiment was executed in 3 repeated blocks. Within 
each block the participant conducted one trial for each 
gesture & scale combination. The presentation order of the 
samples was randomized in each block. 10 practice trials 
were performed before the experiment started. 

10 right-handed volunteers, aged between 20~49, 
participated in the experiment. 

Results 
We performed regression on the average production time as 
related to scale, using both a power model (motivated by 
equation 5) and a linear model. In order to decide the valid 
range of any consistent scaling effect that may exist, we 
applied regression both including and excluding the 
extreme scales, and found the range between 4/1 and 

2 showed the most consistent behavior.  It appeared that 
the two extreme cases that involved different muscle groups 
indeed had different or additional scaling effects.  

The regression result for the range between 4/1 and 2 is 
illustrated in Figure 17.  

Linear Model: 

 T =  230 Scale + 566  (ms)  (R2 = .992)  

Power Model:                                      

 T =  806 Scale 0.210 (ms)   (R2 = .984)  

 
Figure 17. Scaling effect on production time. 

Overall the two models matched the aggregated empirical 
data with similar correlation accuracy.  To observe scale 
effect as related to different stroke gesture characteristics, 
we further performed regression for each class of gestures. 
The results are summarized below. 

                Model 

Gesture 
Group 

Linear Power 

Polylines R2 = .986 R2 = .940 

Smooth Curves R2 = .958 R2 = .995 

Combination R2 = .991 R2 = .959 

Overall R2 = .992 R2 = .984 

Table 1. Scaling effect on production time, by gesture 
classes. 
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Not surprisingly, the power model fitted better with smooth 
curves. This is consistent with the fact that equation (5) was 
derived from the power law of curvature. For gestures with 
corners (polyline and combination), a linear  model better 
described the relationship between the scale and the 
production time. Plausibly the existence of corners 
contributed a more or less constant overhead to the 
production time, thus washed out any subtle non-linear 
relationship that may exists between scale and time. Similar 
to results in experiment 1, the scale also had significant 
effects on both the number of attempts A (F7,63=35.7, 
p<.001) made to pass the set error threshold and the 
remaining percentage error E (F7,63=26.2, p<.001)Both 
measures decrease as the scale increases. 
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Figure 18. Scaling effect on errors. 

 

In summary, the production time of a stroke gesture 
increases with the scale the gesture is articulated at. Such an 
increase is nearly linear, but it is in addition to a rather large 
constant overhead independent of scale. The overall scale 
effect can also be modeled as a power function, with greater 
accuracy when the gesture is a continuous curve.  It is 
important to note the speed accuracy trade-off. While larger 
stroke gestures take longer to articulate, they tend to be 
more accurate. 

The scale effects revealed in this experiment based on 
open-loop gestures is clearly different from the scale effects 
found in visually guided trajectory tasks. For example 

Accot and Zhai [4] systematically examined the impact of 
scale on steering law tasks and found that 1. the impact of 
scale was relatively small in comparison to the impact of 
the steering law’s index of difficulty, and 2. the steering 
time followed a U shaped function of the scale factor with a 
quite flat bottom over 16 folds of scale change. Paths with 
the same index difficulty at the very large and the very 
small scales both took longer than paths at the medium 
scales. These effects are clearly different from the 
monotonic time increase in stroke gesture production. 
However, the errors in the steering law task followed a 
similar trend to the current open-loop stroke gesture study: 
smaller scales tend to cause more errors  (Note that in [4] 
the scale factor was defined as the inverse of the scale 
factor in the current paper). 

DISCUSSION AND CONCLUSION 
Conceptual and mathematical analyses as well as 
knowledge in the motor control literature, particularly 
Viviani’s power law of curvature, led us to a set of 
candidate elemental models and the summative model for 
gestures. We tested these models in two multi-phase 
experiments. The results show that the model forms are 
quite strong, as reflected by the high correlation with 
empirical data from a variety of gesture sets, with greater 
than 0.9 R2 value in all cases. To our knowledge such a 
level of precision has never been previously achieved for 
such a wide range of gestures in varying complexity. In the 
more demanding tests (beyond what is typically done with 
much simpler laws of action) that not only required 
correlation between prediction and empirical data, but also 
a specific a priori time value prediction for each gesture, 
the proposed model may either underestimate or 
overestimate the time needed, but nonetheless gave a 
similar magnitude prediction which can be still useful as a 
baseline prediction for many design purposes. The order 
and ratio of predicted performances between comparative 
pairs were always consistent with the empirical data. We 
reason that two factors are key to the over or under 
estimation of time value. First, individual difference may 
influence the parameters of the model. (In experiment 1, the 
production time difference between the fastest and the 
slowest participant was in the factor of ~2.5.) More accurate 
parameter estimations are needed in future work from a 
very large pool of participants. Second and more 
importantly, familiarity and the amount of practice may 
drive the actual empirical data away from the model’s 
prediction. For unfamiliar and little practiced gestures, such 
as the polyline gestures in experiment 1, actual articulation 
of the gesture may be slower than the model prediction due 
to online visual perception, planning and decision making.  
For familiar or well practiced gestures, as in the rest of the 
gestures sets tested in the two experiments, actual 
production tended to be more rapid than the model 
prediction. This was likely caused by “chunking” behavior 
– linking two or multiple elements of a gesture into one 
action, which can also be explained by our models.  
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Figure 19. Corner-cutting behavior 

For example, for a well-practiced gesture people tend to 
draw a short arc instead of an abrupt corner between two 
gesture elements. As illustrated in Figure 16, the time 
needed to draw the two straight corner arms (blue) is 

nmLT 21 =       (according to equation (11))     (19) 

the time needed to draw the “corner-cutting” arc (red) is  

βθθπ −−
= 1

2 ))2/tan((L
K

T   (according to equation (4))     (20) 

Taking the parameters acquired in experiment 1, and 
approximate n = 1-β, we have: 

414.0
1

12 ))2/)(tan((476.0
2

))2/)(tan((/ θθπθθπ β

−=
−

=
−

mK
TT       (21) 

This function is plotted in Figure 20 (note the ratio becomes 
zero at θ = 0, π , suggesting that cutting a corner of 0º or 
180º is meaningless, since either the radius or the sweep 
angle of the arc becomes zero), with a maximum ≈ 0.8 at θ 
≈ 1 (57.3º). The fact that T2/T1 is less than 1 indicates that 
cutting the corner will always save time. However, this time 
gain is less noticeable at moderate angles around 60º when 
compared with the more extreme angles. Note that this is a 
simplified analysis. A more complete and strict analysis 
should concern the error tolerance criterion and the context 
around the corner, etc. Nonetheless, it provides us with a 
way to more “correctly” apply the summative model 
(equation (13)) than simply adding elements together. 
Instead, one may consider the chunking behavior and 
calculate the elemental and summative models accordingly. 
Alternatively, we may use the simple summation as a 
baseline and add a compensatory term to equation (13) to 
reflect the degree of chunking impact. However, both 
approaches require further research to be practical.   

 
Figure 20. Time for corner-cutting. 

In addition to the modeling contribution toward enlarging 
the theoretical tool box of UI research, design and 
evaluation, the elemental empirical findings from this work 
can also be relevant to gesture interface design and 
interesting to HCI researchers.  Due to the space limitation 

we will only point out two examples. One is that (right-
handed) users are faster at drawing straight lines in the 45º 
and 225º orientations. However, the diagonal directions 
were also found to be more error-prone, probably due to 
humans’ lesser perceptual sensitivity to these angles than 
primary axes directions. Therefore gesture interface 
designers can exploit these directions for faster interaction 
(such as in [5]), but only if the precise orientation is not 
essential to the interaction. The second example is that our 
data showed that it was harder to maintain the same relative 
accuracy for small gestures, suggesting special challenges 
for UI design for very small devices. 

The current work also revealed many differences between 
visually guided movement and open-loop gestures. For 
example, for visually guided motor movement the impact 
on time performance from scale change in the moderate 
range is relatively low, as reflected by, for example, the flat 
bottom of a U shaped function over several orders of 
magnitude scale change [4]. But in open-loop stroke 
gesturing, production time is strongly and monotonically 
influenced by the length of the gesture, both for curved and 
straight (equation (5) and (11)) gesture elements. Another 
difference is that while previous study on visually guided 
steering performance by Pastel [15] found that the degree of 
a corner significantly influences movement time, the 
current study found that the presence of a corner is a major 
determinant of gesture production time; however, the 
difference between different degrees of corner is negligible. 
In sum, the current work shows that findings based on 
visually guided motor control tasks cannot be taken for 
granted when applied to gesture stroke analysis. 

The current work on stroke gesture modeling is probably 
the most comprehensive to date. Previous work in this 
domain is rare and has different goals or makes different 
levels of prediction. The most successful previous model is 
that of Isokoski’s “line counting” model, which has the 
merits of simplicity and ease of calculation. However, it 
makes no specific quantitative time prediction for a given 
gesture. Our proposed model goes beyond the prior work, 
enabling us to, for example, predict the performance 
difference between two layouts for ShapeWriter (in contrast, 
line counting would predict no difference between two 
layouts as long as the number of lines remains the same).  

Our model focused purely on the motor control aspect of 
gesture strokes; thus it does not model the mental 
complexity in perceiving and planning the gestures or the 
transition from novice to expert behavior. In practice these 
are all important factors that influence the overall user 
experience. Furthermore, given the limited data we 
collected, although we have confidence in the form of the 
model, we do not claim to have found “universal” 
parameters in the elemental models. 

Modeling stroke gestures is an important, complex and 
challenging task. The current work should certainly not be 
viewed as an definitive investigation on the topic, but rather 
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as one of the first systematic attempts toward the ultimate 
modeling and understanding of pen stroke gestures as a 
human-computer interaction medium.  
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